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Neural networks for computing 
and denoising the continuous 
nonlinear Fourier spectrum 
in focusing nonlinear Schrödinger 
equation
Egor V. Sedov1,2*, Pedro J. Freire1, Vladimir V. Seredin3, Vladyslav A. Kolbasin3, 
Morteza Kamalian‑Kopae1, Igor S. Chekhovskoy2,4, Sergei K. Turitsyn1,2 & 
Jaroslaw E. Prilepsky1*

We combine the nonlinear Fourier transform (NFT) signal processing with machine learning methods 
for solving the direct spectral problem associated with the nonlinear Schrödinger equation. The 
latter is one of the core nonlinear science models emerging in a range of applications. Our focus is on 
the unexplored problem of computing the continuous nonlinear Fourier spectrum associated with 
decaying profiles, using a specially‑structured deep neural network which we coined NFT‑Net. The 
Bayesian optimisation is utilised to find the optimal neural network architecture. The benefits of using 
the NFT‑Net as compared to the conventional numerical NFT methods becomes evident when we deal 
with noise‑corrupted signals, where the neural networks‑based processing results in effective noise 
suppression. This advantage becomes more pronounced when the noise level is sufficiently high, and 
we train the neural network on the noise‑corrupted field profiles. The maximum restoration quality 
corresponds to the case where the signal‑to‑noise ratio of the training data coincides with that of 
the validation signals. Finally, we also demonstrate that the NFT b‑coefficient important for optical 
communication applications can be recovered with high accuracy and denoised by the neural network 
with the same architecture.

Quite often, the evolution of nonlinear systems is well approximated by the nonlinear partial differential equa-
tions (PDE). Evidently, there is no universal theory for the solution of nonlinear PDEs, but there exists a dis-
tinguished class of nonlinear equations that can be solved with a mathematical rigour: the so-called integrable 
systems. The history of integrable PDEs started in the 1960s when Gardner et al.1 discovered a method for finding 
the infinite families of exact solutions for the Korteweg-de Vries equation. Their method termed the inverse 
scattering transform, can be deemed as the generalisation of the conventional Fourier transform (FT) to the 
nonlinear systems. Thus, the name nonlinear Fourier transform (NFT) for it is often used nowadays, especially 
in the signal processing  literature2,3. Shortly after the integration of the Korteweg-de Vries equation, Zakharov 
and Shabat developed the inverse scattering machinery (i.e. the NFT method) for yet another celebrated PDE: 
the nonlinear Schrödinger equation (NLSE)4, which will be the focus of our current study.

In a nutshell, for an integrable PDE there exists the canonical transform of dependent variables, converting 
the original nonlinear system into the so-called action-angle variables; the evolution of the latter is governed 
by a set of uncoupled trivial (linear) differential equations. Mathematically, this can be treated as the effective 
linearisation of a nonlinear integrable  PDE5,6. For our work, it is important that we know the explicit form of 
the NFT operations attributed to the NLSE.

The NLSE, being a generic model describing the interplay between the dispersive and nonlinear effects, 
is applicable to the description of a vast number of physical phenomena, ranging from the dynamics of 
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magneto-ordered  systems7 to  hydrodynamics8. It also serves, under certain assumptions, as a principal master 
model governing the evolution of a single-polarisation slow-varying light envelope propagating along the single-
mode  fibre9,10. In the dimensionless form we write down the NLSE as:

In the fibre-optic context, q(z, t) is the electromagnetic field evolving down the fibre, z is the distance along with 
the fibre, while t is the retarded time variable. Eq. (1) is explicitly written as the focusing NLSE, corresponding 
to the anomalous dispersion of the standard optical fibre. We note that our further results are general and can 
be used for various physical applications, where NLSE (1) provides a good approximation. Nonetheless, without 
loss of generality, we will refer in the paper to the field q as to “a signal”.

Withing modern optical communications, the NFT is used not as a tool for the NLSE solution, but as a 
signal processing  method2,3. This concept originated from the work of Hasegawa and  Nyu11, who proposed 
to depart from considering the time domain solitonic  shapes10, but rather use the nonlinear spectrum (the 
so-called eigenvalues) for the data modulation and transmission. Over the last decade, the NFT-based optical 
transmission techniques have been resurrected and greatly  extended3,12. The most efficient NFT-based optical 
transmission method is the so-called nonlinear frequency division multiplexing (NFDM)2, within which we 
directly modulate the parameters of the nonlinear modes that emerge from the nonlinear Fourier (NF) signal 
decomposition. When the optical field propagates down the fibre link, the evolution of the nonlinear modes 
inside the NF domain stays almost linear, in contrast to the truly nonlinear evolution of signal in the space-time 
domain. Due to this property, we can theoretically get rid of the infamous nonlinear cross-talk degrading the 
transmission performance at high signal  powers13.

Generally, when considering the NF decomposition of an arbitrary rapidly decaying wave-form, we can have 
two distinct coexisting parts of the NF spectrum: the continuous part, describing quasi-linear dispersive waves, 
and the discrete part, corresponding to solitonic  modes2,3,5,6. The continuous part of NF spectrum is represented 
by the complex-valued function r(ξ) ∈ C of a real argument ξ ∈ R , where ξ is called the spectral parameter; 
r(ξ) is called the reflection coefficient, and ξ emerges as the nonlinear analogue of a conventional Fourier fre-
quency. This NF spectrum part converges to the conventional FT of our signal in the low-power  limit14, see also 
the explicit expressions in Methods. The discrete part consists of the complex eigenvalues ξn ∈ C

+ , located in 
the upper complex half-plane, and the associated norming constants rn (spectral amplitudes)15. The graphical 
summary of the general NF spectrum structure is given in Fig. 1. However, we point out that it is exactly the 
utilisation of the continuous NF spectrum part16–23 that resulted in the breakthrough in the NFDM technology: 
this idea, mentioned already in early NFT transmission-related  works2,14, is in stark contrast with the progenitor 
soliton-based transmission  methods10. In our current study we specifically address the continuous NF spectrum: 
our goal is to compute the profile r(ξ) given the localised q(t) shape. Then, we mention that the continuous NF 
spectrum modulation using the special technique coined b-modulation24–27 has provided the highest NFDM 
data rates so  far12,28. Thus, in this paper we also address the recovery of the b-coefficient, b(ξ) ∈ C , ξ ∈ R , given 
q(t). When the solitons are absent, as it is in the case considered, the full NF spectrum corresponding to a given 
finite-extent signal can be equivalently represented by either the reflection coefficient or by the b-coefficient, see 
more in Methods. Finally, we note that for the NFDM based on the discrete NF  spectrum29–31, the achieved data 
rates have been noticeably lower than those for the modulation of continuous NF spectrum, see the comparison 
 in12, Fig. 1], and we do not address the computation of solitonic parameters in our research.

The NFDM transmission method relies on the (approximate) integrability of our transmission channel, i.e. we 
inherently assume that Eq. (1) is a very accurate model describing the signal evolution down the fibre. However, 
aside from second-order dispersion and Kerr nonlinearity present in (1), in realistic fibre-optic systems, there 
are numerous other effects affecting the signal propagation. Optical noise inevitably arising during the amplifica-
tion  process9 is one of the key challenges in optical communications. The noise results in random NF spectrum 
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Figure 1.  The schematic showing the different coexisting parts of a general NF spectrum: the discrete part, 
represented by the eigenvalues ξn and respective norming constants rn , and the continuous part, shown as the 
function |r(ξ)| on the real ξ-axis.
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 disturbances32,33, imposing limits on the NFDM transmission quality. Thus, in our current work, we analyse the 
capability of a neural network (NN) to denoise the NF spectra. Similarly to Ref.34, in optical transmission appli-
cations, the NFT-Net that we consider in this work, is supposed to be integrated into the receiver architecture: 
it takes in the corrupted signal and yields the “purified” nonlinear spectrum containing the modulated data. 
Another widespread deviation from idealised model (1) is the non-zero nonuniform gain-loss profile occurring 
in realistic systems for both  lumped18,22 and  distributed19 amplification schemes. We also mention the effects of 
polarisation mode  dispersion35,36, higher-order chromatic  dispersion35, and component-induced impairments, 
to itemise just several important sources. All these effects bring about the deviations of the true optical channel 
from integrable NLSE (1) such that the NF spectrum of the signal at the end of our transmission system can be 
significantly distorted, which results in the appearance of errors in the transmitted  data20,21,35. Given that, the 
machine learning and artificial neural networks (NN) based signal processing methods have recently attracted 
much attention, as they can effectively render adaptive distortions-resilient signal processing tools, and, thus, 
using the NNs we can mitigate the impact of detrimental factors mentioned  above37,38.

The first direction in utilising the NNs for NFDM systems consists in applying the additional NN-based 
processing unit at the receiver to compensate the emerging line impairments and deviations from the ideal 
 model39–43. But, despite ensuing transmission quality improvement, this type of NN usage brings about the 
additional complexity of the receiver. In the other approach, the NFT operation at the receiver is entirely replaced 
by the NN element. It has been shown that this approach, indeed, results in a considerable improvement of the 
NFT-based transmission system  functioning31,34,44. But, despite the benefits rendered by such a NN utilisation, 
the NNs emulating the NFT operation have so far been mostly used in the NFDM systems operating with soli-
tons only, and the NN structure used there was relatively simple. In the only work related to the continuous NF 
spectrum  recovery45, a standard “imageInputLayer” NN (developed originally for hand-written digits recogni-
tion) from MATLAB 2019a deep learning toolbox was adapted to process the signals of a special form. Such an 
approach, evidently, has limited applicability and flexibility and is not optimal neither in terms of the result’s 
quality nor in the complexity of signal processing. In our current work, we demonstrate how this direction can be 
significantly extended and optimised, presenting and analysing the NN-based NFT modelling for the continuous 
NF spectrum, and using the special optimisation tools for finding the best NN architecture. We believe that our 
current research can lay the basis for the development of high-efficiency channel-agnostic NFDM transmission 
systems. Moreover, in our study, we address the question of recovering not only the NF spectrum r(ξ) , but also 
the b-coefficient, so it can be combined with the most efficient NFDM transmission method: the b-modulation.

Finally, we note that, recently, the interest in using the NFT as a signal-processing tool has risen in fields that 
are not directly relevant to optical transmission. In particular, the NFT was applied in the so-called integrable 
turbulence to monitor the appearance of coherent structures, such as breathers, solitons, and rogue  waves46,47, 
to the optical microresonators regime  analysis48, to the optical frequency combs  characterisation49, and to the 
analysis of laser regimes and the emergence of dissipative coherent nonlinear  structures50–52. The analysis of NFT 
modes’ evolution for such systems often appears to be more informative and convenient than dealing with the 
conventional Fourier modes. The NFT is also an important tool for the design of fibre Bragg  gratings53,54. Thus, 
we believe that the technique presented in this work can have a much wider range of applications than simply 
being a processing tool in optical communications. To end up, solving nonlinear differential equations itself by 
using NNs is a fast-growing area with a range of applications in science and  engineering55–57. We hope that our 
work will also advance knowledge in this emerging field.

Results
In this section, we describe the main results obtained in the process of finding a suitable NN architecture for 
computing the continuous NF spectrum of a given signal. First, we describe which type of signals we used in 
training and testing. Next, we discuss the Bayesian optimisation application for our finding the best-performing 
NN architecture and the respective training procedure. Then, we analyse the output accuracy for the proposed 
NN architecture and compare it with that produced by a deterministic NFT numerical algorithm. In this paper, 
for the data generation and “conventional” computation we use the Fast NFT (FNFT)  library58. At the end of the 
Results section, we show that the proposed NN architecture can predict not only the scattering coefficient r(ξ) , 
but also the NF coefficient b(ξ) , Eq. (8).

Training data generation. In this work, without loss of generality, we analyse the NF decomposition of 
the signals having the form of wavelength division multiplexing (WDM) format with random modulation and 
return-to-zero carrier functions, considered  in59,60. In the time domain, one (normalised) WDM symbol to 
decompose is given as the sum of independent subcarriers:

where M is a number of WDM channels, ωk is a carrier frequency of the k-th channel, Ck corresponds to the 
digital data in k-th channel, and T defines the symbol interval; f(t) is the carrier support waveform of our return-
to-zero pulses. Q in (2) is the normalisation factor that we use to set the required energy for each signal (the total 
signal energy is calculated according to Eq. (3)). Each Ck in (2) is a complex number drawn from the constellation 
with a particular cardinality, i.e. it is chosen with an equal probability from the finite set of allowed constellation 
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points. For our NF decomposition analysis each time we use a single signal of the form given in Eq. (2). To train 
the NN, we precomputed 94035 such signals, with Ck for each carrier randomly drawn from quadrature phase-
shift keying (QPSK) constellations, i.e. the constellations with 4 possible points; the number of optical channels 
(carriers) in (2) is 15. Then we sampled our signal at equidistant points in time, tm , over the segment of length T, 
q(tm) = qm : the number of sample points in each signal representation was 210 = 1024 . The normalised symbol 
interval T was set to unity so that the time step size used was �t = 2−10 (for the explicit normalisations refer-
ring to single-mode fibre transmission see, e.g., Ref.3). For generated discretised profile, the reflection coefficient 
r(ξ) was identified for 1024 sample points in ξ variable, calculated using the fast numerical NFT  method58. The 
parameter ξ for our computations ranged from −π/(4�t) ≈ −804 to π/(4�t) ≈ 804 : this region corresponds 
to the conventional Fourier spectrum computational bandwidth for the given sampling rate �t , up to the scaling 
factor 2 referring to the linear limit  correspondence14. Each signal in the dataset was eventually normalised so 
that its energy Esignal = 39.0 . Some of the signals in the initial dataset for this energy contained solitons, but such 
signals were singled out and removed from the training and validation datasets. The remaining 94,035 signals 
did not contain solitons, which means that the discrete nonlinear spectrum for each signal is absent, such that 
these are used in our analysis. We note that although there are no solitons in the signals, we are still operating 
in the regime where the signal nonlinearity is not negligible, see Methods. The more straightforward way of 
generating the datasets with desired properties would be to use the inverse NFT routines, but these are much 
more time-consuming, such that we decided to employ the data-generation approach described below: it also 
allows us to explicitly control the accuracy of the generation process.

Together with the set of deterministic signals, we generated the signal sets with the addition of uncorrelated 
Gaussian noise, adding the random value to each sample point. In realistic applications, the source of this noise 
can be the instrumental imperfections of the transceiver or the effects relevant to inline  amplifiecation9. The 
signal-to-noise ratio (SNR) is a traditionally used characteristic for quantifying the level of a noisy corruption:

where Esignal and Enoise are the signal and noise energies, respectively; qm is the m-th signal sample, with N being 
total number of sampling points, �t is the time sample size. For further training, in addition to the set without 
noise, which had 84632 signals, we used 8 sets of 423160 signals (5 different noise realisations). Each set cor-
responds to one of the following SNR values: {0, 5, 10, 13, 17, 20, 25, 30} dB. 9 sets of 9403 signals with the 
corresponding noise levels were left to validate the network performance. Validation data sets were not used in 
the training process. We note that the NFT in optical communications is tailored for use in long-haul systems, 
meaning the high levels of noise (low SNR) is most interesting from the application perspectives. However, we 
also include the results for high SNR levels to analyse the NN functioning peculiarities in detail.

Neural network design and Bayesian optimisation. As mentioned above, the general NF spectrum 
attributed to a given localised waveform consists of two parts: the discrete spectrum that we do not consider 
in our current study (our trial pulses do not contain any solitonic component, neither in pure form nor in the 
noisy case), and the continuous part which is our subject in hand here. The continuous part is retrieved through 
considering the special Jost solutions (7) to the Zakharov-Shabat problem (6), see Methods. The goal of our work 
is to demonstrate the fundamental possibility of replacing the direct calculation of NF spectrum through the 
numerical solution of the Zakharov-Shabat problem (6) with the computations employing specially-designed 
and trained NNs.

The latter task can be addressed using the encoder-decoder approach, where the encoder transforms the input 
signal into some intermediate vector representation and, later, the decoder converts this representation into the 
output signal. We notice that the input and output signals can belong to two different data domains. There are 
several advantages of this approach, e.g. it is quite flexible, so the encoder and decoder structures can differ to 
match exactly the “nature” of each signal’s domain. With this, we train such NNs in the end-to-end style, so the 
weights of the encoder and decoder will be trained simultaneously and fit each other. A lot of highly efficient 
encoder-decoder architectures have been designed up to date, e.g. those can demonstrate an efficiency higher 
than that of a human brain for some specific  tasks61. For processing quite long sequences (typically more than 
1000 data points), the convolutional NNs (CNN) are often more beneficial than the recurrent NNs (RNN). Also, 
the CNN allows us to parallelise the computations in an efficient way, which is important in our case. Thus, we 
argue that the encoder-decoder architectures based on CNNs are most suitable for our data and task, though 
other NN types may also deserve investigation in latter studies.

As a starting point, we took the  WaveNet62-based network, which extends the concept of deep CNNs. Models 
of this type have several advantages, among which we underline the reduction of time required for training the 
network on long data sequences. However, a significant drawback of this architecture is the requirement to embed 
a large number of convolutional layers to increase the receptive field. In our work, to increase the effective size 
of that region, we used convolutions with dilation. This made it possible to exponentially increase the receptive 
field with the NN depth growth and, therefore, to capture a larger number of data points in the input signal.

The momentous issue in using NNs to perform any nonlinear transformation is the choice of the optimal 
network architecture. One of the optimisation methods is to enumerate the possible combinations of NN param-
eters. But even in the case of a relatively small number of layers, the number of hyperparameters can reach several 
thousand, which makes the optimisation process very time-consuming, if realisable at all. Thus, the search for 
an optimisation algorithm for such computationally expensive problems can be extremely difficult. However, 
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the Bayesian optimisation  method63 is deemed to be one of the most efficient optimisation strategies, and so we 
employ it in this work to find the optimal hyperparameters distribution for the NFT-Net.

The Bayesian optimization builds a probabilistic model of the function mapping from hyperparameter values 
to the objective evaluated on a validation  set63,64. By iteratively evaluating a promising hyperparameter configura-
tion based on the current model, and then updating it, the Bayesian optimization aims to gather observations 
revealing as much information as possible about this function and, in particular, the location of the optimum. 
Thus, it tries to balance exploration (hyperparameters for which the outcome is most uncertain) and exploitation 
(the hyperparameters expected to bring us close to the optimum). An important aspect to note is that the Bayes-
ian optimisation often does not return one specific point in the parameter hyperspace for which the optimised 
function is minimal. The process converges into some subspace of parameters, where several points can locally 
minimize the  function63. A detailed description of hyperparameters tuning can be found in the  article65 where 
Bayesian optimisation is used to adapt parameters for the synthesis of a digital pre-distortion filter for optical 
transmitters.

We manipulate the following hyperparameters for the convolutional part of the neural network: the number 
of convolutional layers, the number of filters, the kernel size, stride, dilation, and the activation function for each 
layer. We used the activation functions “ReLU”, “tanh” and “sigmoid” in the hyperparameters optimisation. After 
the convolutional part, there are 2 fully connected layers, the second of which has a fixed size (1024, which cor-
responds to the size of the output vector). The size and activation function of the first fully connected layer was 
also a hyperparameter for optimization. For the optimisation, we used a dataset without additional noise and 
employed only the real part of the continuous spectrum for the prediction. After that, the “optimal” architecture 
(but not weights) is fixed, and is no longer changed to predict the imaginary part of the continuous spectrum or 
for our operating with the datasets with additional noise. The loss function was optimised for each architecture. 
We used the mean squared error (MSE) as the loss function, aiming to minimise the MSE between the network 
output and the target output computed with the conventional NFT  method58. In training, we employed the Adam 
(Adaptive Moment Estimation) optimisation algorithm with the learning rate of 1e–466. The learning process of 
each point in the parameter hyperspace was stopped if the value of the loss function did not decrease over 5000 
epochs. We chose this large epoch stopping-criterium number to neutralise the factor of randomness in the learn-
ing process, which appears due to the random choice of the initial weights. Additionally, we checked the value 
of the loss function on the validation set to prevent the overfitting, but for the amount of training data used, the 
overfitting was not observed. Figure 2 presents the dependence of the MSE value and dependence of its minimum 
on the Bayesian iteration number. For architectures with more than 20 million training parameters, we set the 
value of the loss function to 1.0: this explains the upper cut-off limit in the figure. It is apparent from Fig. 2 that 
the optimisation has identified a subspace where many architectures have approximately the same value of the 
loss function at the level of 10−5 . However, there was a point where the value was at the level of 10−7 . Thus, we 
took this point (a set of hyperparameters) as the optimal one. After finding the optimal architecture, each NN’s 
weights were trained for different SNR but keeping the same optimal architecture parameters. On average, with 
the amount of data used, our learning process took 50,000 epochs to reach the minimum for each noise level.

The original signal and NF data for the continuous spectrum are complex-valued functions. Therefore, two 
networks with the same architecture are to be used for the whole transformation; each identical part is respon-
sible for the computation of either the real or imaginary parts of the resulting arrays, which contain the values 
of continuous NF spectrum defined in Eq. (10). Figure 3 depicts the schematic for the entire optimised NFT-Net 
architecture. The convolutional part consists of three layers with 10, 15 and 10 filters. Kernel sizes of the first and 
third convolutional layers are 10, and for the layer between them, it is 18. As noted above, we took the dilation 
value for each layer as one of the sought hyperparameters. For NFT-Net, the optimisation gave that the first two 
layers have dilation 2, stride 1 and “tanh” activation function, and for the third layer, the dilation is 1 with stride 
3 and “ReLu” activation. After the CNN part we put the flattening layer, not shown in the figure (but affecting the 
processing complexity), and two fully-connected layers with 4096 and 1024 neurons. The exemplary picture of 
how the designed NN works on one signal is given in Fig. 4c. In this figure, we show the results of the NN-based 
NF spectrum computation for the noiseless case. Already from this figure, we can notice that the result produced 
by our NN and that obtained from conventional NFT  routine58 are very similar.

Figure 2.  (a) The dependence of the mean squared error (MSE) value on the number of Bayesian iteration. (b) 
The same for minimal value of MSE.
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Studying the NFT‑Net performance for computing NF spectra of noisy signals. In this section 
we analyse the NFT-Net performance and the denoising property of the NN. We compare the deviations in the 
obtained nonlinear spectrum calculated with the NFT-Net and calculated with the conventional NFT applied 
to the same signal without noise. To quantify the performance rendered by the NFT-Net application with the 
performance of conventional algorithms applied to noisy signals, we use the following metric:

where S is the total number of signals in the validation set, �·�ξ denotes the mean over the spectral interval, 
{rpredicted(ξ)}i and {ractual(ξ)}i correspond to the value of reflection coefficient r(ξ) computed for the signal num-
ber i at point ξ (we compare the quantities for the validation data set). The label “predicted” refers to the result 
produced by the NFT-Net on the noisy signal, and “actual” marks the r(ξ) value obtained using the conventional 
NFT  algorithm58 for the noiseless signal. The relative error η(ξ) is determined at the point ξ , so we use 〈η(ξ)〉ξ to 
estimate the overall mean of the error for one signal, and use Eq. (4) to evaluate the error for the entire validation 
dataset. We stress that the metric was chosen in such a way as to take into account even the regions where the 
value of the spectrum is much less than one.

The results of our comparison for r(ξ) computation using different SNR levels for NFT-Net are presented in 
Table 1, and are arranged as follows. The first column of the table identifies the SNR value in dB for the valida-
tion signals, i.e. the level of noise for the signals which we analyse. The first row of the table displays the SNR 
values of noisy signals from the training set, i.e. it shows the noise level of the signals on which the NFT-Net was 
trained. We notice that the case SNR = 30 dB corresponds to almost negligible noise, while for SNR = 0 dB our 
noise energy is equal to that of our signal, which signifies a very intensive noisy corruption. Thus, each column 
in the table corresponds to the results produced by the NN trained on the signals with the chosen level of a noisy 
corruption. The number in each cell shows the averaged metric value, Eq. (4), where for the computation of 
{rpredicted(ξ)}i we used the NFT-Net trained on the signals with SNR values shown in the first row and applied to 
the validation signals having the SNR values given in the first column. The “Conv. NFT” column shows the error 
value for the numerical result of the fast NFT method on the signals with added noise, where the respective SNR 
is presented, again, in the first column. The value of metric (4) corresponding to the conventional NFT method 
applied to noiseless signals is, obviously, zero: the results provided by the conventional NFT without noise are 
taken as the true ones. When the NFT-Net produces a less accurate result compared to the conventional NFT 
applied to the noisy signal, the cell is marked with bold; when the NFT-Net outperforms the conventional NFT 
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Figure 3.  The schematic of NFT-Net topology: the extended scheme presents the sequence of operations for 
the processing of real part; the processing of imaginary part is identical (marked with the long arrow below the 
scheme). The numbers indicating the layers/arrays sizes refer to our processing 1024 complex-valued signal 
samples.
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method, i.e. it successfully purifies our signal from noise, the respective cell is not highlighted (white). Whence, 
the white area size in each table demonstrates how well the NFT-Net retrieves the nonlinear spectrum for noise-
corrupted signals.

Table 1 shows the error values for the restoration of r(ξ) coefficient (10) of a noiseless and noisy-perturbed 
signals (2), by the NFT-Net architecture given in Fig. 3. The first row in the table corresponds to the noiseless case. 
It is always marked with bold, which means that the NN cannot provide any better results than the benchmark 
ones rendered by the conventional fast NFT method used to generate the training data.

However, the values of the error for noise-corrupted signals reveal interesting tendencies. It follows from 
the table that for the low training noise level (up to 10 dB, columns three through nine), the NFT-Net error is 
typically lowest for the noiseless validation dataset (second row). Thus, the addition of low noise in the train-
ing dataset only degrades the NFT-Net restoration capability, even though this decrease is not significant. This 
NFT-Net feature can be deemed as the NN’s being “confused” by the weak noise in its training in the nonlinear 
transformation identification. For the most interesting case of high noise, the network works best for samples 
where the SNR value is the same for the validation and training sets. In such cases, the relative error is about 
8–12%, while the error for conventional NFT is at the level of 100–200%. Another fact is that with decreasing 
noise (rows from bottom to top) in the validation set, the error value remains at approximately the same level after 
the cell corresponding to the same training and validation noise values. These results confirm that the presented 

Figure 4.  Panel (a) shows an exemplary amplitude of a original complex WDM signal q(t) versus time. 
Below (panel (c)) is the amplitude for calculated scattering coefficient r(ξ) associated with the signal from 
the pane above. The blue line corresponds to the data obtained using the conventional NFT method, the red 
line corresponds to the NFT-Net result. The difference between the scattering coefficients for signal example 
calculated by these methods is shown in panel (e). Pane (b): the same plot for complex signal q(t) with the 
addition of Gaussian noise. The SNR value used is 5 dB. Plot (d) shows the result of calculating the continuous 
spectrum for the noisy signal using the FNFT method (green line) and using the NFT-Net trained at the same 
noise level (SNR = 5 dB, red line) and original spectrum (for noiseless case, blue line). For NFT-Net trained with 
noise, pane (f) below shows the difference between the predicted scattering data for the example of noisy signal 
and the reflection coefficient calculated by conventional NFT for that signal without noise.
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NN architecture is capable of performing the desired nonlinear transformation, the NFT, and, in addition, it can 
also work as an effective denoising element when the noise level becomes non-negligible.

The examples of original and noise-corrupted signals and the corresponding nonlinear continuous spectra 
are given in Fig. 4, where we used the NFT-Net for the computations. Figures 4b and d show that when the 
additional noise distorts the signal, the conventional numerical algorithms naturally produce the noise-distorted 
nonlinear spectra. Fig. 4e and f show the relative error value η(ξ) (4) for the continuous spectrum prediction 
with NFT-Net for the signal without noise (left) and the signal with noise (right), and the reflection coefficient 
computed for the original signal by the conventional NFT (marked as “Conv. NFT” in the panes’ legends). In 
Fig. 4c, e, the NFT-Net is trained on the dataset without adding noise, and in Fig. 4d, f, the NFT-Net is trained 
on the dataset with additional noise for SNR = 5 dB. Figure 4c and d show that in the presence of noise, the fast 
NFT results begin to deviate noticeably from the original (noiseless) values, while the NFT-Net tends to denoise 
the resulting nonlinear spectrum.

NFT‑Net performance for the restoration of NF coefficient b(ξ) attributed to noisy signals. In 
addition to the coefficient r, from the optical communications perspective it is instructive and important to 
check how the proposed architecture would work to predict the NF coefficient b, Eq. (8). We note that the opti-
cal transmission method coined b-modulation24,26,49, where we operate with the modulation of the b-coefficient, 
has proven to be the most efficacious technique among different NFDM methods  proposed12,28. Moreover, for 
the practical case when our signal has a finite extent, the continuous part of the NF spectrum can be completely 
described by the b-coefficient only, because the second NF coefficient a(ξ) can be calculated from b(ξ) profile, 
see Eq. (11) in Methods. Our goal here is to demonstrate that the same NFT-Net structures can be used for the 
both r(ξ) and b(ξ) computation, when the NN is trained on the respective dataset. As the loss function, we now 
use the MSE build on the b-coefficient samples, and the MSE is also used as our quality metric in the respective 
tables:

The notations are the same as we used in (4): the labels “predicted” and “actual” correspond, respectively, to the 
result of the NFT-Net applied to noisy signals and the result produced by the conventional NFT routine applied 
to noiseless signals.

We carried out the analysis of the NFT-Net performance for the restoration of b-coefficient using the same 
approach as we did in the previous subsection for r(ξ) . Our results for noise pulses with the different level of 
noise are summarised in Table 2. We checked that the NFT-Net configurations when applied to the computation 
and denoising of b(ξ) revealed the same tendencies for the quality of restoration as we observed in the previous 
subsection devoted to the reflection coefficient r(ξ).

A similar situation as was observed for coefficient r(ξ) , remains in this case. The error is minimal for a 
noiseless validation set. However, this trend now continues for high noise levels. A similar tendency is observed 
all over the results: the values above the diagonal vary slightly. The additional observations when dealing the 
b-coefficient are as follows. An interesting difference from the case relevant to r(ξ) , is that the metric value (5) 
in the case of predicting b(ξ) is less, and the bold region in Table 1 is larger compared to what we see in Table 2 
for the b-coefficient. From the results, it is clear that the prediction accuracy is higher for the b-coefficient. It 
means that our NN generally works more accurately for the restoration of coefficient b(ξ) than for r(ξ) . This 
result can be expected, as the noise-perturbed r(ξ) contains the noisy contributions from both a(ξ) and b(ξ) , 

(5)ηb =
1

S

S
∑

i=1

�ηb,i(ξ)�ξ , ηb,i(ξ) =
|{bpredicted(ξ)}i − {bactual(ξ)}i|

�|{bactual(ξ)}i|�ξ
.

Table 1.  Comparison of the NFT-Net performance against the conventional NFT in the computation of 
coefficient r(ξ). The table presents the results for the optimised NFT-Net architecture from Fig. 3. The values 
in the cells show the error value (4) for each specific pair of training and validation sets SNR. The bold cells 
correspond to the cases when the accuracy of the NFT-Net nonlinear spectrum restoration is lower than that 
of fast NFT, i.e. the NN does not denoise the signal well, while the white cells correspond to the cases when the 
accuracy of the continuous NF spectrum rendered by the NFT-Net is higher, i.e. the NN effectively denoises 
the result.

Conv. NFT

Training SNR level, dB

w/o noise 30 25 20 17 13 10 5 0

Validation SNR level, dB

w/o noise 0 8.39e–4 6.52e–3 9.43e–3 1.26e–2 1.61e–2 2.38e–2 3.59e–2 7.43e–2 1.42e–1

30 6.91e–2 5.54e–2 9.56e–3 1.11e–2 1.36e–2 1.68e–2 2.42e–2 3.63e–2 7.49e–2 1.44e–1

25 1.23e–1 9.84e–2 1.40e–2 1.39e–2 1.51e–2 1.78e–2 2.45e–2 3.63e–2 7.47e–2 1.43e–1

20 2.21e–1 1.74e–1 2.53e–2 2.18e–2 1.97e–2 2.08e–2 2.58e–2 3.65e–2 7.40e–2 1.43e–1

17 3.10e–1 2.41e–1 3.96e–2 3.23e–2 2.63e–2 2.53e–2 2.78e–2 3.70e–2 7.31e–2 1.42e–1

13 4.89e–1 3.66e–1 7.74e–2 6.12e–2 4.53e–2 3.97e–2 3.54e–2 3.98e–2 7.06e–2 1.38e–1

10 6.78e–1 4.88e–1 1.29e–1 1.03e–1 7.36e–2 6.23e–2 5.12e–2 4.85e–2 6.87e–2 1.33e–1

5 1.16e+0 7.26e–1 2.73e–1 2.31e–1 1.72e–1 1.43e–1 1.15e–1 9.93e–2 7.98e–2 1.17e–1

0 2.00e+0 9.48e–1 4.79e–1 4.37e–1 3.60e–1 3.12e–1 2.59e–1 2.29e–1 1.74e–1 1.16e–1
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while the b-coefficient involves only its noisy contribution, and thus gets corrupted less. So in the latter case, the 
NN has to clean off less noise.

Figure 5 summarizes the above and shows the calculation errors (4) and (5) for NFT-Net architecture. The 
plot actually visualises the values and tendencies from Tables 1 and 2. For both r(ξ) and b(ξ) coefficients, the NN 
outperforms the fast NFT results when the NFT-Net gets trained on the data with additional noise.

Discussion
Our goal in this work was to demonstrate that the NN can be successfully used for performing the NFT opera-
tion, in particular, for computing the profile of continuous NF spectrum. Note that our interest was not only the 
computation of the continuous NF spectrum, i.e. the nonlinear transformation, but the possibility to denoise 
signal using NNs. We started with the WafeNet-type  architecture62, which is effectively a deep CNN, and applied 
Bayesian  optimization67 to find the optimal set of hyperparameters. Initially, we set the task of optimizing the 
entire architecture, so the hyperparameters were not only the parameters of the layers but also their number.

Table 2.  Comparison of the NFT-Net performance against the fast conventional NFT in the computation of 
coefficient b(ξ). The table presents the results for the NFT-Net architecture from Fig. 3. The values in the cells 
show the error value (5) for each specific pair of training and validation sets SNR. The bold cells correspond to 
the cases when the accuracy of the NFT-Net nonlinear spectrum restoration is lower than that of fast NFT, i.e. 
the NN does not denoise the signal well, while the white cells correspond to the cases when the accuracy of the 
continuous NF spectrum rendered by the NFT-Net is higher, i.e. the NN effectively denoises the signal.

Conv. NFT

Training SNR level, dB

w/o noise 30 25 20 17 13 10 5 0

Validation SNR level, dB

w/o noise 0 7.12e–3 5.37e–3 5.87e–3 6.49e–3 8.69e–3 1.07e–2 1.20e–2 1.58e–2 1.77e–2

30 1.15e–1 5.83e–2 6.73e–3 6.69e–3 7.16e–3 8.95e–3 1.08e–2 1.20e–2 1.58e–2 1.77e–2

25 2.05e–1 1.02e–1 1.02e–2 8.70e–3 8.48e–3 9.54e–3 1.09e–2 1.21e–2 1.58e–2 1.77e–2

20 3.64e–1 1.75e–1 2.13e–2 1.51e–2 1.18e–2 1.12e–2 1.14e–2 1.23e–2 1.59e–2 1.78e–2

17 5.14e–1 2.38e–1 3.66e–2 2.41e–2 1.59e–2 1.33e–2 1.21e–2 1.26e–2 1.60e–2 1.78e–2

13 8.14e–1 3.44e–1 7.73e–2 4.94e–2 2.64e–2 1.88e–2 1.39e–2 1.36e–2 1.63e–2 1.80e–2

10 1.15e+0 4.41e–1 1.31e–1 8.58e–2 4.21e–2 2.70e–2 1.67e–2 1.51e–2 1.69e–2 1.84e–2

5 2.04e+0 6.22e–1 2.70e–1 1.96e–1 9.95e–2 5.91e–2 2.81e–2 2.18e–2 1.95e–2 1.99e–2

0 3.60e+0 7.98e–1 4.54e–1 3.68e–1 2.24e–1 1.42e–1 6.34e–2 4.43e–2 2.93e–2 2.43e–2

Figure 5.  (a) The dependence of the error parameter η (4) for coefficient r(ξ) on the SNR value of the 
validation dataset for fast conventional NFT and NFT-Net trained at different noise levels. (b) The same for 
the error parameter ηb (5) for coefficient b(ξ) . The black line represents the error value for fast NFT applied 
to noisy signals, and the points below this line refer to the cases when the NFT-Net outperforms conventional 
computations. Other lines show the value of the error in calculating the continuous spectrum using NFT-Net, 
trained with different noise levels: green—without additional noise, red—with additional noise with SNR = 30 
dB, violet—at SNR = 20 dB purple—at SNR = 10 dB, blue—at SNR = 0 dB.
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Once again, we emphasize that Bayesian optimization does not always give the “best” set of parameters. It 
provides a subspace of hyperparameters in which neural networks with such parameters are best trained on 
the available dataset. Due to the fact that neural networks are universal approximators, any sufficiently com-
plex architecture can be trained for a specific task. We can expect that the optimization process can converge 
endlessly towards increasing the complexity of the network. However, this is not suitable for our task, where 
we want to minimize the complexity of the network while improving the accuracy of the work. Therefore, we 
simultaneously limited the number of trainable parameters in the NN during optimization. In our case, during 
the optimization process, we found an architecture that gives us the best metric value (4) and we chose it as the 
desired architecture. Further, the optimization process could converge to another subspace of hyperparameters, 
but we stick to the point with the minimum value of the loss function.

We found that this NN, indeed, can perform the NFT operation and denoise the received NF spectrum: 
the denoising effect is pronounced at medium to high noise levels. To achieve this effect, several realisations of 
the noise are needed for the neural network to “understand” the influence of noise on the signal. As expected, 
denoising is typically best when the training and testing data noise levels coincide, though we observed some 
deviations from this rule for lower noise levels, where the quality of restoration of the NF spectrum also makes 
a noticeable contribution in the overall error value. When being trained on different noise levels, the NFT-Net 
was still able to produce denoising, thus demonstrating the design’s flexibility. We have shown that conventional 
NFT calculation methods give “distorted” results when working added noise. In fact, the “distorted” results are 
actually correct, but from the nonlinear transformation point of view. But from the application’s perspective, we 
are almost always interested in the denoised signals to reduce the embedded data corruption level. At this place 
we notice that the exemplary signals that we used for the NFT-Net training/testing, Eq. (2), are, evidently, differ-
ent from those used in r- of b-modulated NFDM systems. Moreover, the latter are subject to dispersive effects as 
the NN has to process them at the receiver side after their having passed some distance. To adapt the NFT-Net 
for the different signals, two possible strategies can be used. The first one is straightforward, where we retrain the 
NN from scratch using a different dataset. The second strategy can make use of the pretrained NFT-Net model 
and utilise domain randomisation and  adaptation68,69. We believe that after the retraining procedure, the NFT-
Net (or some of its modifications, if we find that the capacity of the proposed NN architecture is insufficient to 
account for some complicated real-world effects) should be capable to account for the spurious soliton emergence 
and involved noise properties taking place in the realistic optical transmission systems.

Finally, we note that the problem of recovering a few solitons from a given pulse utilizing NN has been stud-
ied  in31,34,44,70. However, the NN architectures used in those studies are much simpler as one has to identify and 
filter only a few solitonic parameters , while in our work we recovered 1024 complex numbers representing the 
continuous NF spectrum. A larger number of solitary modes was considered  in71, where, however, only the total 
number of solitons in the pulse was studied. Potentially, it is interesting to combine the NN developed in our 
work with the additional module that can deal with soliton parameters restoration: such a hybrid tool would be 
able to perform the complete NFT decomposition of an arbitrary decaying pulse.

To sum up, we investigated the modelling of the NFT operation associated with the focusing NLSE, using 
the NN with a special structure, which we coined the NFT-Net. We considered here an almost unexplored 
case dealing with the computation of the continuous part of the NF spectrum. It was demonstrated that the 
WaveNet-type NFT-Net structure can satisfactorily perform the task of the NF spectrum computation, and the 
best-performing architecture was obtained by Bayesian hyperparameters optimisation. Moreover, we showed 
that the same NFT-Net structure can be used to efficaciously retrieve both the reflection coefficient r(ξ) and 
the scattering coefficient b(ξ) . The most practically important feature of the developed NN-based method is its 
capability to perform signal denoising. We demonstrated that the NN-based processing can bring about essential 
improvements in the quality of NF spectrum restoration attributed to noise-perturbed time-domain profiles, 
compared to the conventional high-accuracy NFT processing method. The advantage in denoising becomes 
most pronounced at high noise levels, with the maximum restoration quality typically occurring when the SNR 
of the training data is the same as that of the validation dataset.

Methods
Forward NFT operation for focusing NLSE. The NF spectrum associated to a given pulse q(t) (we drop 
the dependence of our quantities on z for simplicity) having a finite L1 norm, is calculated using the solutions 
of the so-called Zakharov-Shabat spectral  problem2–4,6. The latter is represented by the set of coupled ordinary 
differential equations written for two auxiliary functions v1,2 . Our signal to decompose, q(t), enters into this set 
as an effective potential. We write down the Zakharov-Shabat problem (the focusing NLSE case)  as4:

In Eq. (6), ξ is the (generally complex-valued) spectral parameter which plays the role of conventional Fourier 
frequency for integrable nonlinear PDEs. The overbar in Eq. (6) and below denotes the complex conjugates of 
corresponding quantities. To determine the NF spectrum associated with our profile q(t), we need to find the 
special solution �(t, ξ) of Eq. (6), called Jost function, imposing the special asymptotic condition at the trailing 
end of the pulse:

(6)
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The NF pulse decomposition consists in finding the continuous and discrete components of the NF spectrum 
associated with the localised signal q(t). The core part of NFT is the calculation of scattering coefficients, a(ξ) ∈ C 
and b(ξ) ∈ C , defined through the Jost solution �(t, ξ) as follows

where ξ ∈ R . The scattering coefficients for the focusing NLSE satisfy:

The continuous part of NF spectrum is generally defined by the ratio of quantities b and a from (7):

where r(ξ) is often refereed to as the reflection coefficient. r(ξ) plays the role of the ordinary Fourier spectrum 
for nonlinear integrable PDEs and converges to the FT of our signal in the low-power (linear) limit; see more 
direct expressions below.

The discrete part of NF spectrum (the solitonic degrees of freedom) consists of the set of complex-valued 
pairs: {ξn, cn} , where n numerates the soliton mode, and each ξn is the (non-degenerate) solution of the equation 
a(ξ) = 0 , laying the the upper complex semi-plane of ξ . The second quantity, the so-called norming constants 
cn , are given (for a sufficiently localised  signal72) by: cn = c(ξn) = b(ξn)/a

′(ξn) , with prime meaning the deriva-
tive with respect to ξ . The value of ξn determines the amplitude and frequency of each solitonic component, 
while cn defines the values of phase and the “centre-of-mass” position of a solitary mode. However, the discrete 
part of NF spectrum is not addressed in our study; see Refs.31,34,44 where the solitonic parameters are computed 
using the NNs.

More exact mathematical details regarding the NF spectrum definition and properties can be found in, e.g., 
 monograph6, see also Ref.72 for a brief mathematical review.

NF spectrum associated with finite‑extent signals. In practical applications, we do not typically deal 
with the signals defined on the whole infinite t-axis, but rather operate with the truncated wave-forms, meaning 
that q(t) is non-zero only inside the finite interval of t. In this case, the NF spectrum of the signal is completely 
characterised by the coefficient b(ξ) from (8), which becomes band-limited, appended with the finite discrete 
set of solitonic parameters {ξn, cn}25,26. When, in addition, the discrete NF spectrum is absent, as it is in the case 
considered, the whole NF spectrum can be defined using just b(ξ)  profile24, while the coefficient a(ξ) can be 
expressed through b(ξ) in the following way:

where the integral in the exponent is understood in the principal value sense. So, in practice, instead of r(ξ) (10), 
it is sufficient to compute the b-coefficient, and then find a(ξ) using Eq. (11). If needed, we then can use both 
computed quantities to find the reflection coefficient (10). In practice, the b-coefficient is preferable, since when 
calculating the r(ξ) , in the case of a value of the a(ξ) close to zero, the numerical error of the calculation greatly 
increases. We note that within the b-modulation concept, which has turned out to be the most efficacious NFDM 
method developed so far, we utilise the b(ξ) functions as information  carriers24–27.

NF spectrum for the weakly‑nonlinear case and threshold for soliton nucleation. Let us assume 
that the amplitude of our signal is small, say |q(t)| ∼ ε , with ε ≪ 1 . Then, we can derive the following expansions 
for the NF scattering  coefficients14:

up to ε2 (the next expansion term ∼ ε4 ), and

up to ε3 (the next expansion term ∼ ε5 ). With the accuracy up to ε4 , we have for the reflection coefficient:

So we see that the first linear term in r(ξ) expansion is simply the conjugated FT of our signal up to the fre-
quency scaling factor. Then, r(ξ) from Eq. (14) differs from the expression for b(ξ) , Eq. (13), only by the terms 
∼ ε3 and higher, but the structure of both expressions is the same, and so the NFT-Net with the same structure 
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can successfully recover both r(ξ) and b(ξ) if we explicitly train it for the recognition of the corresponding quan-
tity. We believe that this also holds for any level of nonlinearity, maybe aside from the case when we are close to 
the soliton creation threshold and r(ξ) displays sharp  peaks14, Fig. 2]. But, in such a special scenario, it looks more 
efficient to use the NN to recover a(ξ) and b(ξ) profiles, as these do not typically display any singular behaviour.

Turning to the question of soliton appearance from a localised profile, the rigorous criterion for our having 
no embedded solitons can be formulated for single-lobe profiles  as73:

and the deterministic profiles used in our work have a much higher normalised energy. For more involved 
multi-lobe profiles, the soliton-creation threshold is typically higher, but we still had some profiles that contained 
solitary components, so we had to eliminate them. When we add noise to our signal that initially contains no 
solitons, a random modulation typically diminishes the probability of solitons  appearance74,75. However, we 
checked out that all randomly perturbed signals used in our study did not contain a solitonic component as well.

To demonstrate the difference between the continuous NFT spectrum and the linear FT spectrum, we cal-
culated (taking into account the necessary transformations and frequency scaling) both spectra for an example 
signal of the type used in our analysis. As the measure showing the distinction between the conventional Fourier 
and NF spectra, we use the norm of the difference: |r(ξ)− rFT (ξ)| , where rFT (ξ) is given by the first (linear) 
term in the expansion of r(ξ) , Eq. (14). Figure 6a shows an example of a nonlinear and conventional Fourier 
spectrum. The dependence of the difference on the spectral parameter ξ for a typical signal from our testing set 
is shown in Fig. 6b. The critical decrease of the difference at ξ region below −100 and above 100 occurs because 
the amplitude of the continuous spectrum at that region also tends to zero. The average maximal difference 
parameter value over the entire spectrum for all signals from the test dataset is ≈ 9 . This fact allows us to argue 
that the nonlinear effects are essential for the selected testing signals, despite their containing no solitons. Thus, 
the accuracy of the NFT-Net allows us to perceive the truly nonlinear effects.

Numerical NFT computation. In our work we used the conventional forward NFT numerical method to 
generate training and testing data set pairs: the signal and its respective NF spectrum. For the computation of 
continuous NF spectrum associated with a given profile q(t) (containing no solitons) having the form of Eq. (2), 
we used the exponential scheme ES4 from the FNFT  package58 (non-fast realisation). It has the accuracy propor-
tional to the fourth power of the time sample size, ∼ (�t)4 . We note that there exists the fast realisation of the 
NFT processing with ∼ (�t)4  accuracy76, which can potentially be used for efficient NFT-Net training.

Complexity analysis. One of the important metrics in the development of signal processing tools is the 
complexity of the processing device, i.e. the number of elementary arithmetic operations that the processing unit 
employs to reach its goal. Quite often we need to analyse the interplay between the complexity and accuracy of 
the processing unit. Thus, here we perform the complexity analysis for the NFT-Net.

In our case, we concentrate only on the number of multiplications, since in practical implementation the 
computational complexity of addition operations is negligible. The number of real multiplications needed for 
the forward propagation of the model, as introduced  in77 for several types of NN layers, is also used to calculate 
the computational complexity of the NFT-Net in this paper.

The overall complexity C of the NFT-Net can be presented as the sum of two constituents: the complexity of 
densely-connected block Cdense and the complexity of convolutional block Cconv . For the calculation of Cdense 
the same formula as  in77 can be used, where we have ni inputs, n1 neurons in the hidden layers, and no outputs, 
and the complexity is defined as:

(15)

∞
∫

−∞

|q(t)| dt < π/2,

Figure 6.  (a) Example of the amplitudes of Fourier spectrum (FT) and continuous nonlinear Fourier spectrum 
(NFT) for one of the training signals. (b) Example of the absolute value of the difference between Fourier 
spectrum and continuous nonlinear Fourier spectrum for one of the training signal. For both graphs signal 
energy Esignal = 39.0 in non-dimensional units.
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In the case of the convolution layer, we can change the equation given  in77 to measure the generalised convo-
lutional layer complexity by taking into account the number of filters f and kernel size k, as well as the effect of 
padding p, stride s, and dilation d. The complexity Cconv, layer for one layer when the input shape is [ Lin,Qin ], is 
specified as follows:

where Qin denotes a number of channels, Lin is a length of signal samples sequence. Therefore, the total com-
plexity of the NFT-Net used in this paper in terms of real multiplications per output sequence (1024 complex 
valued points) is:

where the factor 2 in front appears due to the use of two identical NNs to predict the real and imaginary parts of 
the continuous NF spectrum. Turning to our optimised architecture, to process 1024 complex signal samples, 
the following number of multiplication operations for the optimised architecture is required:

For comparison, processing a signal consisting of 1024 points using FNFT methods from Ref.78 requires 
3885572 FLOPs (note that this is not the number of multiplications, so the direct comparison with the number 
from Eq. (19) is somewhat difficult). Generally, for the computation of N points in the NF spectrum from N point 
in t-domain, the non-fast NFT  methods72 typically require N2 FLOPs, while the fast methods need N log2 N 
 FLOPs58,78. From this perspective, the complexity of the current NFT-Net corresponds to that of non-fast NFT 
methods. However, some techniques can be further used to reduce the NN’s  complexity79.
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